Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Prosthodont Res ; 68(1): 105-113, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37164657

RESUMEN

PURPOSE: The aim of this study is to evaluate the mechanical and adhesive properties of three different resin cements with bioactive glass (BAG) incorporated in two different ratios. METHODS: BAG was added to different resin cements (3M Rely-X Ultimate, GC Link Ace, and GC Link Force) in different ratios (5% and 10% by weight). The three-point flexural strength, microhardness, and bond strength properties were evaluated. The fracture types of the groups were then analyzed using a stereo microscope. The data were analyzed using a multifactorial analysis of variance and Tukey's post-hoc tests (α < 0.05). RESULTS: The addition of BAG reduced the flexural strength of the resin cements (P < 0.05).The effect of BAG addition on the Vickers microhardness value was significantly different for each cement group (P < 0.05). In addition, with the exception of the GC link force group (10% BAG addition), the BAG addition decreased the bond strength of cements to dentin in all the groups (P = 0.171). CONCLUSIONS: The results of this study confirmed that different resin cements comprising different ratios of BAG exhibited different flexural strength, hardness, and bond-strength properties. Since the bond strength values increased with the addition of 10% BAG in the GC Link Force cement group, the effects of different BAG compositions could be worth investigating in future studies.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Cementos de Resina/química , Recubrimiento Dental Adhesivo/métodos , Cementos Dentales/química , Cementos de Ionómero Vítreo/química , Ensayo de Materiales , Propiedades de Superficie , Dentina , Vidrio , Análisis del Estrés Dental
2.
Materials (Basel) ; 13(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106404

RESUMEN

Fiber reinforced composites (FRCs) are metal free materials that have many applications in dentistry. In clinical orthodontics, they are used as retainers after active treatment in order to avoid relapse. However, although the modulus of the elasticity of FRCs is low, the rigidity of the material in the form of a relatively thick retainer with a surface cover of a flowable resin composite is known to have higher structural rigidity than stainless steel splints. The aim of the present study is to measure load and bending stress of stainless steel wires, as well as flowable resin composite covered and spot­bonded FRC retainer materials after tooth brushing. These materials were tested with a three point bending test for three different conditions: no brushing, 26 min of brushing, and 60 min of brushing. SEM images were taken before and after different times of tooth brushing. Results showed that stainless steel was not significantly affected by tooth brushing. On the other hand, a significant reduction of values at maximum load at fracture was reported for both FRC groups, and uncovered FRCs were most affected. Concerning maximum bending stress, no significant reduction by pretreatment conditions was reported for the materials tested. SEM images showed no evident wear for stainless steel. Flowable resin composite covered FRCs showed some signs of composite wear, whereas spot­bonded FRCs, i.e., without the surface cover of a flowable resin composite, showed signs of wear on the FRC and exposed glass fibers from the FRC's polymer matrix. Because of the significant changes of the reduction of maximum load values and the wear for spot­bonded FRCs, this technique needs further in vitro and in vivo tests before it can be performed routinely in clinical practice.

3.
J Adv Prosthodont ; 10(1): 32-42, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29503712

RESUMEN

PURPOSE: The purpose of this study was to derive and compare the inherent color (hue angle, chroma), translucency (TPSCI), surface gloss (ΔE*SCE-SCI), and surface roughness (Ra) amongst selected shades and brands of three hybrid CAD/CAM blocks [GC Cerasmart (CS); Lava Ultimate (LU); Vita Enamic (VE)]. MATERIALS AND METHODS: The specimens (N = 225) were prepared into square-shaped (12 × 12 mm2) with different thicknesses and shades. The measurements of color, translucency, and surface gloss were performed by a reflection spectrophotometer. The surface roughness and surface topography were assessed by white light interferometry. RESULTS: Results revealed that hue and chroma values were influenced by the material type, material shade, and material thickness (P < .001). The order of hue angle amongst the materials was LU > CS > VE, whereas the order of chroma was VE > CS > LU. TPSCI results demonstrated a significant difference in terms of material types and material thicknesses (P ≤ .001). TPSCI values of the tested materials were ordered as LU > CS > VE. ΔE*SCE-SCI and Ra results were significantly varied amongst the materials (P < .001) and amongst the shades (P < .05). The order of ΔE*SCE-SCI amongst the materials were as follows LU > VE ≥ CS, whereas the order of Ra was CS ≥ VE > LU. CONCLUSION: Nano-ceramic and polymer-infiltrated-feldspathic ceramic-network CAD/CAM materials exhibited different optical, inherent color and surface parameters.

4.
Dent Mater J ; 37(1): 49-58, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29081445

RESUMEN

To evaluate the influence of different materials on the load-bearing-capacity of inlay-retained fixed-dental-prosthesis (FDP). Ten types of FDPs were evaluated (n=7/group): Group PEEK: CAD-CAM polyetheretherketone (PEEK-TechnoMed), Group RC, made of discontinuous-fiber-composite (EverX Posterior); Group FRC1, made of discontinuous-fiber-composite (EverX Posterior) with two-bundles of continuous-unidirectional fiber-reinforced-composite (FRC) (Everstick C&B); Group FRC2, made of discontinuous-fiber-composite (EverX Posterior) with two-bundles of continuous-unidirectional-FRC (Everstick C&B) covered by two-pieces of short-unidirectional-FRC (Everstick C&B) placed perpendicular to the main-framework; Group FB, CAD-CAM fiber-block (Fibra-Composite Bio-C); Group PMMA, CAD-CAM polymethyl methacrylate block (Temp basic); Group RP, resin-paste; Group FRP1, made of resin-paste (G-Fix) with two-bundles of continuous-unidirectional-FRC (Everstick C&B); Group FRP2, made of resin-paste (G-Fix) two-bundles of continuous-unidirectional-FRC covered by two-pieces of short unidirectional-FRC placed perpendicular to the main-framework and Group exp-FRC, experimental CAD-CAM FRC. The bridges were statically-loaded until fracture. Fracture modes were visually examined. ANOVA revealed that significant differences were observed between FDP-materials (p<0.05). In addition, fiber addition to the framework significantly affected load-bearing-capacity (p<0.05).


Asunto(s)
Resinas Compuestas/química , Materiales Dentales/química , Análisis del Estrés Dental , Diseño de Dentadura , Dentadura Parcial Fija , Benzofenonas , Diseño Asistido por Computadora , Vidrio , Cetonas/química , Ensayo de Materiales , Metacrilatos/química , Polietilenglicoles/química , Polímeros , Ácidos Polimetacrílicos/química , Polimetil Metacrilato/química , Propiedades de Superficie , Soporte de Peso
5.
J Prosthodont Res ; 61(4): 471-479, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28343924

RESUMEN

PURPOSE: To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. METHODS: Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. RESULTS: Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. CONCLUSION: Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application.


Asunto(s)
Resinas Acrílicas , Fenómenos Químicos , Resinas Compuestas , Vidrio , Poliuretanos , Resinas Acrílicas/química , Resinas Compuestas/química , Fenómenos Mecánicos , Poliuretanos/química , Resistencia a la Tracción
6.
J Prosthodont Res ; 60(4): 265-273, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26973053

RESUMEN

PURPOSE: The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. METHODS: CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). RESULTS: There were significant differences between ceramics and resin cements (p<0.001). However, hydrofluoric acid gel treatment had no effect on bond strength values (p=0.073). In addition, thermal cycling significantly decreased bond strength values of resin cements to ceramics (p<0.001). CONCLUSIONS: Use of appropriate resin cement systems with different ceramic/glass-polymer materials might promote the bonding capacity of these systems.


Asunto(s)
Cerámica , Diseño Asistido por Computadora , Recubrimiento Dental Adhesivo , Cementos Dentales , Materiales Dentales , Análisis del Estrés Dental , Ensayo de Materiales , Nanoestructuras , Polímeros , Cementos de Resina , Resinas Sintéticas , Resistencia al Corte , Ácido Fluorhídrico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...